Genetics of Migraine: Insights into the Molecular Basis of Migraine Disorders
Heidi G. Sutherland PhD
Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, QUT, Musk Ave, Kelvin Grove, QLD, 4059 Australia
Search for more papers by this authorCorresponding Author
Lyn R. Griffiths PhD
Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, QUT, Musk Ave, Kelvin Grove, QLD, 4059 Australia
Address all correspondence to L.R. Griffiths, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, QUT, Musk Ave, Kelvin Grove, QLD, 4059, Australia.Search for more papers by this authorHeidi G. Sutherland PhD
Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, QUT, Musk Ave, Kelvin Grove, QLD, 4059 Australia
Search for more papers by this authorCorresponding Author
Lyn R. Griffiths PhD
Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, QUT, Musk Ave, Kelvin Grove, QLD, 4059 Australia
Address all correspondence to L.R. Griffiths, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, QUT, Musk Ave, Kelvin Grove, QLD, 4059, Australia.Search for more papers by this authorConflict of Interest: None.
Abstract
Migraine is a complex, debilitating neurovascular disorder, typically characterized by recurring, incapacitating attacks of severe headache often accompanied by nausea and neurological disturbances. It has a strong genetic basis demonstrated by rare migraine disorders caused by mutations in single genes (monogenic), as well as familial clustering of common migraine which is associated with polymorphisms in many genes (polygenic). Hemiplegic migraine is a dominantly inherited, severe form of migraine with associated motor weakness. Family studies have found that mutations in three different ion channels genes, CACNA1A, ATP1A2, and SCN1A can be causal. Functional studies of these mutations has shown that they can result in defective regulation of glutamatergic neurotransmission and the excitatory/inhibitory balance in the brain, which lowers the threshold for cortical spreading depression, a wave of cortical depolarization thought to be involved in headache initiation mechanisms. Other putative genes for monogenic migraine include KCKN18, PRRT2, and CSNK1D, which can also be involved with other disorders. There are a number of primarily vascular disorders caused by mutations in single genes, which are often accompanied by migraine symptoms. Mutations in NOTCH3 causes cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary cerebrovascular disease that leads to ischemic strokes and dementia, but in which migraine is often present, sometimes long before the onset of other symptoms. Mutations in the TREX1 and COL4A1 also cause vascular disorders, but often feature migraine. With respect to common polygenic migraine, genome-wide association studies have now identified single nucleotide polymorphisms at 38 loci significantly associated with migraine risk. Functions assigned to the genes in proximity to these loci suggest that both neuronal and vascular pathways also contribute to the pathophysiology of common migraine. Further studies are required to fully understand these findings and translate them into treatment options for migraine patients.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
head13053-sup-0001-suppinfo01.doc248.5 KB | Table S1: Improving the quality of reports of meta-analyses of randomized controlled trials: the QUOROM statement checklist |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Lipton RB, Bigal ME, Diamond M, Freitag F, Reed ML, Stewart WF. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology. 2007; 68: 343-349.
- 2 Lipton RB, Stewart WF, Diamond S, Diamond ML, Reed M. Prevalence and burden of migraine in the United States: Data from the American Migraine Study II. Headache. 2001; 41: 646-657.
- 3 Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015; 386: 743-800.
- 4 Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia. 2013; 33: 629-808.
- 5 Vetvik KG, Macgregor EA, Lundqvist C, Russell MB. Prevalence of menstrual migraine: A population-based study. Cephalalgia. 2014; 34: 280-288.
- 6 Pavlovic JM, Stewart WF, Bruce CA, et al. Burden of migraine related to menses: Results from the AMPP study. J Headache Pain. 2015; 16: 24.
- 7 J Olesen, JG Goadsby, NH Ramadan, P Tfelt-Hansen, KMH Welch, eds. The Headaches, 3rd edn. Philadelphia: Lippincott Williams & Wilkins; 2006.
- 8 Noseda R, Burstein R. Migraine pathophysiology: Anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain. Pain. 2013; 154(Suppl. 1): S44-S53.
- 9 Levy D. Endogenous mechanisms underlying the activation and sensitization of meningeal nociceptors: The role of immuno-vascular interactions and cortical spreading depression. Curr Pain Headache Rep. 2012; 16: 270-277.
- 10 Leao AA. The slow voltage variation of cortical spreading depression of activity. Electroencephalogr Clin Neurophysiol. 1951; 3: 315-321.
- 11 Kramer DR, Fujii T, Ohiorhenuan I, Liu CY. Cortical spreading depolarization: Pathophysiology, implications, and future directions. J Clin Neurosci. 2016; 24: 22-27.
- 12 Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002; 8: 136-142.
- 13 Zhang X, Levy D, Noseda R, Kainz V, Jakubowski M, Burstein R. Activation of meningeal nociceptors by cortical spreading depression: Implications for migraine with aura. J Neurosci. 2010; 30: 8807-8814.
- 14 Zhang X, Levy D, Kainz V, Noseda R, Jakubowski M, Burstein R. Activation of central trigeminovascular neurons by cortical spreading depression. Ann Neurol. 2011; 69: 855-865.
- 15 Karatas H, Erdener SE, Gursoy-Ozdemir Y, et al. Spreading depression triggers headache by activating neuronal Panx1 channels. Science. 2013; 339: 1092-1095.
- 16 Burstein R, Noseda R, Borsook D. Migraine: Multiple processes, complex pathophysiology. J Neurosci. 2015; 35: 6619-6629.
- 17 Stankewitz A, Aderjan D, Eippert F, May A. Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J Neurosci. 2011; 31: 1937-1943.
- 18 Lang E, Kaltenhauser M, Neundorfer B, Seidler S. Hyperexcitability of the primary somatosensory cortex in migraine—A magnetoencephalographic study. Brain. 2004; 127: 2459-2469.
- 19 Aurora SK, Barrodale PM, Tipton RL, Khodavirdi A. Brainstem dysfunction in chronic migraine as evidenced by neurophysiological and positron emission tomography studies. Headache. 2007; 47: 996-1003, discussion 1004-1007.
- 20 Vecchia D, Pietrobon D. Migraine: A disorder of brain excitatory-inhibitory balance? Trends Neurosci. 2012; 35: 507-520.
- 21 Kelman L. The triggers or precipitants of the acute migraine attack. Cephalalgia. 2007; 27: 394-402.
- 22 Levy D, Strassman AM, Burstein R. A critical view on the role of migraine triggers in the genesis of migraine pain. Headache. 2009; 49: 953-957.
- 23 Vetvik KG, MacGregor EA. Sex differences in the epidemiology, clinical features, and pathophysiology of migraine. Lancet Neurol. 2017; 16: 76-87.
- 24 Russell MB, Iselius L, Olesen J. Migraine without aura and migraine with aura are inherited disorders. Cephalalgia. 1996; 16: 305-309.
- 25 Russell MB, Ulrich V, Gervil M, Olesen J. Migraine without aura and migraine with aura are distinct disorders. A population-based twin survey. Headache. 2002; 42: 332-336.
- 26 Honkasalo ML, Kaprio J, Winter T, Heikkila K, Sillanpaa M, Koskenvuo M. Migraine and concomitant symptoms among 8167 adult twin pairs. Headache. 1995; 35: 70-78.
- 27 Mulder EJ, Van Baal C, Gaist D, et al. Genetic and environmental influences on migraine: A twin study across six countries. Twin Res. 2003; 6: 422-431.
- 28 Polderman TJ, Benyamin B, de Leeuw CA, et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 2015; 47: 702-709.
- 29 Gormley P, Anttila V, Winsvold BS, et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat Genet. 2016; 48: 856-866.
- 30 Pelzer N, Stam AH, Haan J, Ferrari MD, Terwindt GM. Familial and sporadic hemiplegic migraine: Diagnosis and treatment. Curr Treat Options Neurol. 2013; 15: 13-27.
- 31 Kors EE, Terwindt GM, Vermeulen FL, et al. Delayed cerebral edema and fatal coma after minor head trauma: Role of the CACNA1A calcium channel subunit gene and relationship with familial hemiplegic migraine. Ann Neurol. 2001; 49: 753-760.
- 32 Russell MB, Ducros A. Sporadic and familial hemiplegic migraine: Pathophysiological mechanisms, clinical characteristics, diagnosis, and management. Lancet Neurol. 2011; 10: 457-470.
- 33 Lykke Thomsen L, Kirchmann Eriksen M, Faerch Romer S, et al. An epidemiological survey of hemiplegic migraine. Cephalalgia. 2002; 22: 361-375.
- 34 Thomsen LL, Ostergaard E, Olesen J, Russell MB. Evidence for a separate type of migraine with aura: Sporadic hemiplegic migraine. Neurology. 2003; 60: 595-601.
- 35 Silberstein SD, Dodick DW. Migraine genetics: Part II. Headache. 2013; 53: 1218-1229.
- 36 Ophoff RA, Terwindt GM, Vergouwe MN, et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell. 1996; 87: 543-552.
- 37 Diriong S, Lory P, Williams ME, Ellis SB, Harpold MM, Taviaux S. Chromosomal localization of the human genes for alpha 1A, alpha 1B, and alpha 1E voltage-dependent Ca2+ channel subunits. Genomics. 1995; 30: 605-609.
- 38 Catterall WA. Structure and function of neuronal Ca2+ channels and their role in neurotransmitter release. Cell Calcium. 1998; 24: 307-323.
- 39 de Vries B, Frants RR, Ferrari MD, van den Maagdenberg AM. Molecular genetics of migraine. Hum Genet. 2009; 126: 115-132.
- 40 Di Lorenzo C, Grieco GS, Santorelli FM. Migraine headache: A review of the molecular genetics of a common disorder. J Headache Pain. 2012; 13: 571-580.
- 41 Tottene A, Fellin T, Pagnutti S, et al. Familial hemiplegic migraine mutations increase Ca(2+) influx through single human CaV2.1 channels and decrease maximal CaV2.1 current density in neurons. Proc Natl Acad Sci U S A. 2002; 99: 13284-13289.
- 42 van den Maagdenberg AM, Pietrobon D, Pizzorusso T, et al. A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron. 2004; 41: 701-710.
- 43 van den Maagdenberg AM, Pizzorusso T, Kaja S, et al. High cortical spreading depression susceptibility and migraine-associated symptoms in Ca(v)2.1 S218L mice. Ann Neurol. 2010; 67: 85-98.
- 44 Chen SP, Tolner EA, Eikermann-Haerter K. Animal models of monogenic migraine. Cephalalgia. 2016; 36: 704-721.
- 45 Ferrari MD, Klever RR, Terwindt GM, Ayata C, van den Maagdenberg AM. Migraine pathophysiology: Lessons from mouse models and human genetics. Lancet Neurol. 2015; 14: 65-80.
- 46 Tottene A, Conti R, Fabbro A, et al. Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Ca(v)2.1 knockin migraine mice. Neuron. 2009; 61: 762-773.
- 47 Pietrobon D, Moskowitz MA. Pathophysiology of migraine. Annu Rev Physiol. 2013; 75: 365-391.
- 48 Eising E, Shyti R, t Hoen PA, et al. Cortical spreading depression causes unique dysregulation of inflammatory pathways in a transgenic mouse model of migraine. Mol Neurobiol. 2016; Mar 31 [Epub ahead of print].
- 49 Thomsen LL, Kirchmann M, Bjornsson A, et al. The genetic spectrum of a population-based sample of familial hemiplegic migraine. Brain. 2007; 130: 346-356.
- 50 Eikermann-Haerter K, Dilekoz E, Kudo C, et al. Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J Clin Invest. 2009; 119: 99-109.
- 51 Pereira Mda C, Morais S, Sequeiros J, Alonso I. Large-scale functional RNAi screen in C. elegans identifies TGF-beta and notch signaling pathways as modifiers of CACNA1A. ASN Neuro. 2016; 8(2) pii:1759091416637025.
- 52 Zhuchenko O, Bailey J, Bonnen P, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet. 1997; 15: 62-69.
- 53 Jen J, Kim GW, Baloh RW. Clinical spectrum of episodic ataxia type 2. Neurology. 2004; 62: 17-22.
- 54 Sinke RJ, Ippel EF, Diepstraten CM, et al. Clinical and molecular correlations in spinocerebellar ataxia type 6: A study of 24 Dutch families. Arch Neurol. 2001; 58: 1839-1844.
- 55 Mantuano E, Romano S, Veneziano L, et al. Identification of novel and recurrent CACNA1A gene mutations in fifteen patients with episodic ataxia type 2. J Neurol Sci. 2010; 291: 30-36.
- 56 Watase K, Barrett CF, Miyazaki T, et al. Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels. Proc Natl Acad Sci U S A. 2008; 105: 11987-11992.
- 57 De Fusco M, Marconi R, Silvestri L, et al. Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet. 2003; 33: 192-196.
- 58 Skou JC. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta. 1957; 23: 394-401.
- 59 Cholet N, Pellerin L, Magistretti PJ, Hamel E. Similar perisynaptic glial localization for the Na+,K+-ATPase alpha 2 subunit and the glutamate transporters GLAST and GLT-1 in the rat somatosensory cortex. Cereb Cortex. 2002; 12: 515-525.
- 60 Benarroch EE. Glutamate transporters: Diversity, function, and involvement in neurologic disease. Neurology. 2010; 74: 259-264.
- 61 Friedrich T, Tavraz NN, Junghans C. ATP1A2 mutations in migraine: Seeing through the facets of an ion pump onto the neurobiology of disease. Front Physiol. 2016; 7: 239.
- 62 Isaksen TJ, Lykke-Hartmann K. Insights into the pathology of the alpha2-Na(+)/K(+)-ATPase in neurological disorders; lessons from animal models. Front Physiol. 2016; 7: 161.
- 63 Leo L, Gherardini L, Barone V, et al. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. PLoS Genet. 2011; 7: e1002129.
- 64 Bottger P, Glerup S, Gesslein B, et al. Glutamate-system defects behind psychiatric manifestations in a familial hemiplegic migraine type 2 disease-mutation mouse model. Sci Rep. 2016; 6: 22047.
- 65 Capuani C, Melone M, Tottene A, et al. Defective glutamate and K+ clearance by cortical astrocytes in familial hemiplegic migraine type 2. EMBO Mol Med. 2016; 8: 967-986.
- 66 Dichgans M, Freilinger T, Eckstein G, et al. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet. 2005; 366: 371-377.
- 67 Catterall WA. From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron. 2000; 26: 13-25.
- 68 Meng H, Xu HQ, Yu L, et al. The SCN1A mutation database: Updating information and analysis of the relationships among genotype, functional alteration, and phenotype. Hum Mutat. 2015; 36: 573-580.
- 69 Zuberi SM, Brunklaus A, Birch R, Reavey E, Duncan J, Forbes GH. Genotype-phenotype associations in SCN1A-related epilepsies. Neurology. 2011; 76: 594-600.
- 70 Fan C, Wolking S, Lehmann-Horn F, et al. Early-onset familial hemiplegic migraine due to a novel SCN1A mutation. Cephalalgia. 2016; Jan 16 pii:10333102415608360 [Epub ahead of print].
- 71 Ogiwara I, Miyamoto H, Morita N, et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: A circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci. 2007; 27: 5903-5914.
- 72 Yu FH, Mantegazza M, Westenbroek RE, et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci. 2006; 9: 1142-1149.
- 73 Chastan N, Lebas A, Legoff F, Parain D, Guyant-Marechal L. Clinical and electroencephalographic abnormalities during the full duration of a sporadic hemiplegic migraine attack. Neurophysiol Clin. 2016; 46: 307-311.
- 74 Weller CM, Pelzer N, de Vries B, et al. Two novel SCN1A mutations identified in families with familial hemiplegic migraine. Cephalalgia. 2014; 34: 1062-1069.
- 75 Vanmolkot KR, Babini E, de Vries B, et al. The novel p.L1649Q mutation in the SCN1A epilepsy gene is associated with familial hemiplegic migraine: Genetic and functional studies. Mutation in brief #957. Online. Hum Mutat. 2007; 28: 522.
- 76 Castro MJ, Stam AH, Lemos C, et al. First mutation in the voltage-gated Nav1.1 subunit gene SCN1A with co-occurring familial hemiplegic migraine and epilepsy. Cephalalgia. 2009; 29: 308-313.
- 77 Cestele S, Labate A, Rusconi R, et al. Divergent effects of the T1174S SCN1A mutation associated with seizures and hemiplegic migraine. Epilepsia. 2013; 54: 927-935.
- 78 Vahedi K, Depienne C, Le Fort D, et al. Elicited repetitive daily blindness: A new phenotype associated with hemiplegic migraine and SCN1A mutations. Neurology. 2009; 72: 1178-1183.
- 79 Kahlig KM, Rhodes TH, Pusch M, et al. Divergent sodium channel defects in familial hemiplegic migraine. Proc Natl Acad Sci U S A. 2008; 105: 9799-9804.
- 80 Pellacani S, Sicca F, Di Lorenzo C, et al. The revolution in migraine genetics: From aching channels disorders to a next-generation medicine. Front Cell Neurosci. 2016; 10: 156.
- 81 de Vries B, Freilinger T, Vanmolkot KR, et al. Systematic analysis of three FHM genes in 39 sporadic patients with hemiplegic migraine. Neurology. 2007; 69: 2170-2176.
- 82 Carreno O, Corominas R, Serra SA, et al. Screening of CACNA1A and ATP1A2 genes in hemiplegic migraine: Clinical, genetic, and functional studies. Mol Genet Genomic Med. 2013; 1: 206-222.
- 83 Riant F, Ducros A, Ploton C, Barbance C, Depienne C, Tournier-Lasserve E. De novo mutations in ATP1A2 and CACNA1A are frequent in early-onset sporadic hemiplegic migraine. Neurology. 2010; 75: 967-972.
- 84 Simons C, Rash LD, Crawford J, et al. Mutations in the voltage-gated potassium channel gene KCNH1 cause Temple-Baraitser syndrome and epilepsy. Nat Genet. 2015; 47: 73-77.
- 85 Depienne C, Trouillard O, Gourfinkel-An I, et al. Mechanisms for variable expressivity of inherited SCN1A mutations causing Dravet syndrome. J Med Genet. 2010; 47: 404-410.
- 86 Jen JC, Wan J, Palos TP, Howard BD, Baloh RW. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology. 2005; 65: 529-534.
- 87 Suzuki M, Van Paesschen W, Stalmans I, et al. Defective membrane expression of the Na(+)-HCO(3)(-) cotransporter NBCe1 is associated with familial migraine. Proc Natl Acad Sci U S A. 2010; 107: 15963-15968.
- 88 Ebrahimi-Fakhari D, Saffari A, Westenberger A, Klein C. The evolving spectrum of PRRT2-associated paroxysmal diseases. Brain. 2015; 138: 3476-3495.
- 89 Riant F, Roze E, Barbance C, et al. PRRT2 mutations cause hemiplegic migraine. Neurology. 2012; 79: 2122-2124.
- 90 Schwenk J, Harmel N, Brechet A, et al. High-resolution proteomics unravel architecture and molecular diversity of native AMPA receptor complexes. Neuron. 2012; 74: 621-633.
- 91 Lee HY, Huang Y, Bruneau N, et al. Mutations in the gene PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep. 2012; 1: 2-12.
- 92 Condliffe SB, Corradini I, Pozzi D, Verderio C, Matteoli M. Endogenous SNAP-25 regulates native voltage-gated calcium channels in glutamatergic neurons. J Biol Chem. 2010; 285: 24968-24976.
- 93 Gardiner AR, Jaffer F, Dale RC, et al. The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain. 2015; 138: 3567-3580.
- 94 Wu L, Tang HD, Huang XJ, et al. PRRT2 truncated mutations lead to nonsense-mediated mRNA decay in Paroxysmal Kinesigenic Dyskinesia. Parkinsonism Relat Disord. 2014; 20: 1399-1404.
- 95 Brueckner F, Kohl B, Puest B, et al. Unusual variability of PRRT2 linked phenotypes within a family. Eur J Paediatr Neurol. 2014; 18: 540-542.
- 96 Bhatia KP. Paroxysmal dyskinesias. Mov Disord. 2011; 26: 1157-1165.
- 97 Pelzer N, de Vries B, Kamphorst JT, et al. PRRT2 and hemiplegic migraine: A complex association. Neurology. 2014; 83: 288-290.
- 98 Lafreniere RG, Cader MZ, Poulin JF, et al. A dominant-negative mutation in the TRESK potassium channel is linked to familial migraine with aura. Nat Med. 2010; 16: 1157-1160.
- 99 Enyedi P, Czirjak G. Properties, regulation, pharmacology, and functions of the K(2)p channel, TRESK. Pflugers Arch. 2015; 467: 945-958.
- 100 Dobler T, Springauf A, Tovornik S, et al. TRESK two-pore-domain K+ channels constitute a significant component of background potassium currents in murine dorsal root ganglion neurones. J Physiol. 2007; 585: 867-879.
- 101 Chae YJ, Zhang J, Au P, Sabbadini M, Xie GX, Yost CS. Discrete change in volatile anesthetic sensitivity in mice with inactivated tandem pore potassium ion channel TRESK. Anesthesiology. 2010; 113: 1326-1337.
- 102 Liu P, Xiao Z, Ren F, et al. Functional analysis of a migraine-associated TRESK K+ channel mutation. J Neurosci. 2013; 33: 12810-12824.
- 103 Andres-Enguix I, Shang L, Stansfeld PJ, et al. Functional analysis of missense variants in the TRESK (KCNK18) K channel. Sci Rep. 2012; 2: 237.
- 104 Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG. Cadasil. Lancet Neurol. 2009; 8: 643-653.
- 105 Joutel A, Corpechot C, Ducros A, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature. 1996; 383: 707-710.
- 106 Prakash N, Hansson E, Betsholtz C, Mitsiadis T, Lendahl U. Mouse Notch 3 expression in the pre- and postnatal brain: Relationship to the stroke and dementia syndrome CADASIL. Exp Cell Res. 2002; 278: 31-44.
- 107 Hori K, Sen A, Artavanis-Tsakonas S. Notch signaling at a glance. J Cell Sci. 2013; 126: 2135-2140.
- 108 Eikermann-Haerter K, Yuzawa I, Dilekoz E, Joutel A, Moskowitz MA, Ayata C. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy syndrome mutations increase susceptibility to spreading depression. Ann Neurol. 2011; 69: 413-418.
- 109 Arboleda-Velasquez JF, Zhou Z, Shin HK, et al. Linking notch signaling to ischemic stroke. Proc Natl Acad Sci U S A. 2008; 105: 4856-4861.
- 110 Arboleda-Velasquez JF, Manent J, Lee JH, et al. Hypomorphic Notch 3 alleles link Notch signaling to ischemic cerebral small-vessel disease. Proc Natl Acad Sci U S A. 2011; 108: E128-E135.
- 111 Stam AH, Kothari PH, Shaikh A, et al. Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. Brain. 2016; Sep 6 pii: aww217 [Epub ahead of print].
- 112 Richards A, van den Maagdenberg AM, Jen JC, et al. C-terminal truncations in human 3'-5' DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet. 2007; 39: 1068-1070.
- 113 Rice GI, Rodero MP, Crow YJ. Human disease phenotypes associated with mutations in TREX1. J Clin Immunol. 2015; 35: 235-243.
- 114 Peschke K, Achleitner M, Frenzel K, et al. Loss of Trex1 in dendritic cells is sufficient to trigger systemic autoimmunity. J Immunol. 2016; 197: 2157-2166.
- 115 Grieves JL, Fye JM, Harvey S, Grayson JM, Hollis T, Perrino FW. Exonuclease TREX1 degrades double-stranded DNA to prevent spontaneous lupus-like inflammatory disease. Proc Natl Acad Sci U S A. 2015; 112: 5117-5122.
- 116 Hasan M, Fermaintt CS, Gao N, et al. Cytosolic nuclease TREX1 regulates oligosaccharyltransferase activity independent of nuclease activity to suppress immune activation. Immunity. 2015; 43: 463-474.
- 117 Breedveld G, de Coo IF, Lequin MH, et al. Novel mutations in three families confirm a major role of COL4A1 in hereditary porencephaly. J Med Genet. 2006; 43: 490-495.
- 118 Stam AH, Haan J, van den Maagdenberg AM, Ferrari MD, Terwindt GM. Migraine and genetic and acquired vasculopathies. Cephalalgia. 2009; 29: 1006-1017.
- 119 Jeanne M, Jorgensen J, Gould DB. Molecular and genetic analyses of collagen type IV mutant mouse models of spontaneous intracerebral hemorrhage identify mechanisms for stroke prevention. Circulation. 2015; 131: 1555-1565.
- 120 Xu Y, Padiath QS, Shapiro RE, et al. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature. 2005; 434: 640-644.
- 121 Xu Y, Toh KL, Jones CR, Shin JY, Fu YH, Ptacek LJ. Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell. 2007; 128: 59-70.
- 122 Brennan KC, Bates EA, Shapiro RE, et al. Casein kinase idelta mutations in familial migraine and advanced sleep phase. Sci Transl Med. 2013; 5:183ra156, 181-111.
- 123 Alstadhaug KB. Migraine and the hypothalamus. Cephalalgia. 2009; 29: 809-817.
- 124 Maniyar FH, Sprenger T, Monteith T, Schankin C, Goadsby PJ. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain. 2014; 137: 232-241.
- 125 Ahn AH, Goadsby PJ. Migraine and sleep: New connections. Cerebrum. 2013;2013: 15.
- 126 Schurks M. Genetics of migraine in the age of genome-wide association studies. J Headache Pain. 2012; 13: 1-9.
- 127 Maher BH, Griffiths LR. Identification of molecular genetic factors that influence migraine. Mol Genet Genomics. 2011; 285: 433-446.
- 128 Battistini S, Stenirri S, Piatti M, et al. A new CACNA1A gene mutation in acetazolamide-responsive familial hemiplegic migraine and ataxia. Neurology. 1999; 53: 38-43.
- 129 Omata T, Takanashi J, Wada T, Arai H, Tanabe Y. Genetic diagnosis and acetazolamide treatment of familial hemiplegic migraine. Brain Dev. 2011; 33: 332-334.
- 130 Artto V, Nissila M, Wessman M, Palotie A, Farkkila M, Kallela M. Treatment of hemiplegic migraine with triptans. Eur J Neurol. 2007; 14: 1053-1056.
- 131 Stam AH, Luijckx GJ, Poll-The BT, et al. Early seizures and cerebral oedema after trivial head trauma associated with the CACNA1A S218L mutation. J Neurol Neurosurg Psychiatry. 2009; 80: 1125-1129.
- 132 Dale RC, Gardiner A, Branson JA, Houlden H. Benefit of carbamazepine in a patient with hemiplegic migraine associated with PRRT2 mutation. Dev Med Child Neurol. 2014; 56: 910.
- 133 Rudkjobing LA, Esserlind AL, Olesen J. Future possibilities in migraine genetics. J Headache Pain. 2012; 13: 505-511.
- 134 Nemeth AH, Kwasniewska AC, Lise S, et al. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain. 2013; 136: 3106-3118.
- 135 Handel AE, Chintawar S, Lalic T, et al. Assessing similarity to primary tissue and cortical layer identity in induced pluripotent stem cell-derived cortical neurons through single-cell transcriptomics. Hum Mol Genet. 2016; 25: 989-1000.
- 136 Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013; 501: 373-379.
- 137 Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014; 32: 347-355.
- 138 Gasparini CF, Sutherland HG, Griffiths LR. Studies on the pathophysiology and genetic basis of migraine. Curr Genomics. 2013; 14: 300-315.
- 139 Kondratieva N, Azimova J, Skorobogatykh K, et al. Biomarkers of migraine: Part 1—Genetic markers. J Neurol Sci. 2016; 369: 63-76.
- 140 Nyholt DR, LaForge KS, Kallela M, et al. A high-density association screen of 155 ion transport genes for involvement with common migraine. Hum Mol Genet. 2008; 17: 3318-3331.
- 141 Rubino E, Ferrero M, Rainero I, Binello E, Vaula G, Pinessi L. Association of the C677T polymorphism in the MTHFR gene with migraine: A meta-analysis. Cephalalgia. 2009; 29: 818-825.
- 142 Schurks M, Rist PM, Kurth T. MTHFR 677C>T and ACE D/I polymorphisms in migraine: A systematic review and meta-analysis. Headache. 2010; 50: 588-599.
- 143 Samaan Z, Gaysina D, Cohen-Woods S, et al. Methylenetetrahydrofolate reductase gene variant (MTHFR C677T) and migraine: A case control study and meta-analysis. BMC Neurol. 2011; 11: 66.
- 144 Liu R, Geng P, Ma M, et al. MTHFR C677T polymorphism and migraine risk: A meta-analysis. J Neurol Sci. 2014; 336: 68-73.
- 145 Kaunisto MA, Kallela M, Hamalainen E, et al. Testing of variants of the MTHFR and ESR1 genes in 1798 Finnish individuals fails to confirm the association with migraine with aura. Cephalalgia. 2006; 26: 1462-1472.
- 146 Todt U, Freudenberg J, Goebel I, et al. MTHFR C677T polymorphism and migraine with aura. Ann Neurol. 2006; 60: 621-622, author reply 622-623.
- 147 de Vries B, Anttila V, Freilinger T, et al. Systematic re-evaluation of genes from candidate gene association studies in migraine using a large genome-wide association data set. Cephalalgia. 2016; 36: 604-614.
- 148 Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ. Trait-associated SNPs are more likely to be eQTLs: Annotation to enhance discovery from GWAS. PLoS Genet. 2010; 6: e1000888.
- 149 Maurano MT, Humbert R, Rynes E, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012; 337: 1190-1195.
- 150 Visscher PM, Brown MA, McCarthy MI, Yang J. Five years of GWAS discovery. Am J Hum Genet. 2012; 90: 7-24.
- 151 Anttila V, Stefansson H, Kallela M, et al. Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1. Nat Genet. 2010; 42: 869-873.
- 152 Chasman DI, Schurks M, Anttila V, et al. Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet. 2011; 43: 695-698.
- 153 Dussor G, Cao YQ. TRPM8 and migraine. Headache. 2016; 56: 1406-1417.
- 154 Julius D. TRP channels and pain. Annu Rev Cell Dev Biol. 2013; 29: 355-384.
- 155 Gan M, Jiang P, McLean P, Kanekiyo T, Bu G. Low-density lipoprotein receptor-related protein 1 (LRP1) regulates the stability and function of GluA1 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor in neurons. PLoS One. 2014; 9: e113237.
- 156 Chi J, Cohen P. The multifaceted roles of PRDM16: Adipose biology and beyond. Trends Endocrinol Metab. 2016; 27: 11-23.
- 157 Kinameri E, Inoue T, Aruga J, et al. Prdm proto-oncogene transcription factor family expression and interaction with the Notch-Hes pathway in mouse neurogenesis. PLoS One. 2008; 3: e3859.
- 158 Endo K, Karim MR, Taniguchi H, et al. Chromatin modification of Notch targets in olfactory receptor neuron diversification. Nat Neurosci. 2011; 15: 224-233.
- 159 Freilinger T, Anttila V, de Vries B, et al. Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet. 2012; 44: 777-782.
- 160 Flavell SW, Kim TK, Gray JM, et al. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron. 2008; 60: 1022-1038.
- 161 Wilson PM, Fryer RH, Fang Y, Hatten ME. Astn2, a novel member of the astrotactin gene family, regulates the trafficking of ASTN1 during glial-guided neuronal migration. J Neurosci. 2010; 30: 8529-8540.
- 162 Nguyen HL, Lee YJ, Shin J, et al. TGF-beta signaling in endothelial cells, but not neuroepithelial cells, is essential for cerebral vascular development. Lab Invest. 2011; 91: 1554-1563.
- 163 Allen PB, Greenfield AT, Svenningsson P, Haspeslagh DC, Greengard P. Phactrs 1-4: A family of protein phosphatase 1 and actin regulatory proteins. Proc Natl Acad Sci U S A. 2004; 101: 7187-7192.
- 164 Consortium CAD, Deloukas P, Kanoni S, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013; 45: 25-33.
- 165 Myocardial Infarction Genetics C, Kathiresan S, Voight BF, et al. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009; 41: 334-341.
- 166 Beaudoin M, Gupta RM, Won HH, et al. Myocardial infarction-associated SNP at 6p24 interferes with MEF2 binding and associates with PHACTR1 expression levels in human coronary arteries. Arterioscler Thromb Vasc Biol. 2015; 35: 1472-1479.
- 167 Anttila V, Winsvold BS, Gormley P, et al. Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat Genet. 2013; 45: 912-917.
- 168 Chasman DI, Anttila V, Buring JE, et al. Selectivity in genetic association with sub-classified migraine in women. PLoS Genet. 2014; 10: e1004366.
- 169 Gormley P, Winsvold BS, Nyholt DR, Kallela M, Chasman DI, Palotie A. Migraine genetics: From genome-wide association studies to translational insights. Genome Med. 2016; 8: 86.
- 170 Joutel A, Monet M, Domenga V, Riant F, Tournier-Lasserve E. Pathogenic mutations associated with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy differently affect Jagged1 binding and Notch3 activity via the RBP/JK signaling Pathway. Am J Hum Genet. 2004; 74: 338-347.
- 171 Hara K, Shiga A, Fukutake T, et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med. 2009; 360: 1729-1739.
- 172 Cuenca-Leon E, Corominas R, Montfort M, et al. Familial hemiplegic migraine: Linkage to chromosome 14q32 in a Spanish kindred. Neurogenetics. 2009; 10: 191-198.
- 173 Spain SL, Barrett JC. Strategies for fine-mapping complex traits. Hum Mol Genet. 2015; 24: R111-R119.
- 174 Smemo S, Tena JJ, Kim KH, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014; 507: 371-375.
- 175 Claussnitzer M, Dankel SN, Kim KH, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015; 373: 895-907.
- 176 Matesanz F, Fedetz M, Barrionuevo C, et al. A splice variant in the ACSL5 gene relates migraine with fatty acid activation in mitochondria. Eur J Hum Genet. 2016; 24: 1572-1577.
- 177 Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014; 511: 421-427.
- 178 Nyholt DR, Gillespie NG, Heath AC, Merikangas KR, Duffy DL, Martin NG. Latent class and genetic analysis does not support migraine with aura and migraine without aura as separate entities. Genet Epidemiol. 2004; 26: 231-244.
- 179 Nyholt DR, International Headache Genetics C, Anttila V, et al. Concordance of genetic risk across migraine subgroups: Impact on current and future genetic association studies. Cephalalgia. 2015; 35: 489-499.
- 180 Thomsen LL, Eriksen MK, Roemer SF, Andersen I, Olesen J, Russell MB. A population-based study of familial hemiplegic migraine suggests revised diagnostic criteria. Brain. 2002; 125: 1379-1391.
- 181 Spector JT, Kahn SR, Jones MR, Jayakumar M, Dalal D, Nazarian S. Migraine headache and ischemic stroke risk: An updated meta-analysis. Am J Med. 2010; 123: 612-624.
- 182 Schurks M, Rist PM, Shapiro RE, Kurth T. Migraine and mortality: A systematic review and meta-analysis. Cephalalgia. 2011; 31: 1301-1314.
- 183 Wang SJ, Chen PK, Fuh JL. Comorbidities of migraine. Front Neurol. 2010; 1: 16.
- 184 Sowell MK, Youssef PE. The comorbidity of migraine and epilepsy in children and adolescents. Semin Pediatr Neurol. 2016; 23: 83-91.
- 185 Ligthart L, Penninx BW, Nyholt DR, et al. Migraine symptomatology and major depressive disorder. Cephalalgia. 2010; 30: 1073-1081.
- 186 Buse DC, Silberstein SD, Manack AN, Papapetropoulos S, Lipton RB. Psychiatric comorbidities of episodic and chronic migraine. J Neurol. 2013; 260: 1960-1969.
- 187 Malik R, Freilinger T, Winsvold BS, et al. Shared genetic basis for migraine and ischemic stroke: A genome-wide analysis of common variants. Neurology. 2015; 84: 2132-2145.
- 188 Winawer MR, Connors R, Investigators E. Evidence for a shared genetic susceptibility to migraine and epilepsy. Epilepsia. 2013; 54: 288-295.
- 189 Yang Y, Ligthart L, Terwindt GM, Boomsma DI, Rodriguez-Acevedo AJ, Nyholt DR. Genetic epidemiology of migraine and depression. Cephalalgia. 2016; 36: 679-691.
- 190 Winsvold BS, Nelson CP, Malik R, et al. Genetic analysis for a shared biological basis between migraine and coronary artery disease. Neurol Genet. 2015; 1: e10.
- 191 Yang Y, Zhao H, Heath AC, Madden PA, Martin NG, Nyholt DR. Shared genetic factors underlie migraine and depression. Twin Res Hum Genet. 2016; 19: 341-350.
- 192 Ligthart L, Hottenga JJ, Lewis CM, et al. Genetic risk score analysis indicates migraine with and without comorbid depression are genetically different disorders. Hum Genet. 2014; 133: 173-186.
- 193 Couch JR, Amitriptyline Versus Placebo Study G. Amitriptyline in the prophylactic treatment of migraine and chronic daily headache. Headache. 2011; 51: 33-51:
- 194 Linde M, Mulleners WM, Chronicle EP, McCrory DC. Valproate (valproic acid or sodium valproate or a combination of the two) for the prophylaxis of episodic migraine in adults. Cochrane Database Syst Rev. 2013: CD010611.
- 195 An XK, Ma QL, Lin Q, Zhang XR, Lu CX, Qu HL. PRDM16 rs2651899 variant is a risk factor for Chinese common migraine patients. Headache. 2013; 53: 1595-1601.
- 196 Fan X, Wang J, Fan W, et al. Replication of migraine GWAS susceptibility loci in Chinese Han population. Headache. 2014; 54: 709-715.
- 197 Ghosh J, Pradhan S, Mittal B. Genome-wide-associated variants in migraine susceptibility: A replication study from North India. Headache. 2013; 53: 1583-1594.
- 198 Cox HC, Lea RA, Bellis C, et al. A genome-wide analysis of 'Bounty' descendants implicates several novel variants in migraine susceptibility. Neurogenetics. 2012; 13: 261-266.
- 199 Minster RL, Hawley NL, Su CT, et al. A thrifty variant in CREBRF strongly influences body mass index in Samoans. Nat Genet. 2016; 48: 1049-1054.
- 200 Fry AE, Rees E, Thompson R, et al. Pathogenic copy number variants and SCN1A mutations in patients with intellectual disability and childhood-onset epilepsy. BMC Med Genet. 2016; 17: 34.
- 201 Eising E, NAD, van den Maagdenberg AM, Ferrari MD. Epigenetic mechanisms in migraine: A promising avenue? BMC Med. 2013; 11: 26.
- 202 Ulrich V, Olesen J, Gervil M, Russell MB. Possible risk factors and precipitants for migraine with aura in discordant twin-pairs: A population-based study. Cephalalgia. 2000; 20: 821-825.
- 203 Barros J, Barreto R, Brandao AF, et al. Monozygotic twin sisters discordant for familial hemiplegic migraine. J Headache Pain. 2013; 14: 77.
- 204 Dempster EL, Pidsley R, Schalkwyk LC, et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Genet. 2011; 20: 4786-4796.
- 205 Cordova-Palomera A, Fatjo-Vilas M, Gasto C, Navarro V, Krebs MO, Fananas L. Genome-wide methylation study on depression: Differential methylation and variable methylation in monozygotic twins. Transl Psychiatry. 2015; 5: e557.
- 206 Bell JT, Loomis AK, Butcher LM, et al. Differential methylation of the TRPA1 promoter in pain sensitivity. Nat Commun. 2014; 5: 2978.
- 207 Wang X, Zhu H, Snieder H, et al. Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Med. 2010; 8: 87.
- 208 Lund G, Andersson L, Lauria M, et al. DNA methylation polymorphisms precede any histological sign of atherosclerosis in mice lacking apolipoprotein E. J Biol Chem. 2004; 279: 29147-29154.
- 209 Ran C, Graae L, Magnusson PK, Pedersen NL, Olson L, Belin AC. A replication study of GWAS findings in migraine identifies association in a Swedish case-control sample. BMC Med Genet. 2014; 15: 38.
- 210 Rodriguez-Acevedo AJ, Ferreira MA, Benton MC, et al. Common polygenic variation contributes to risk of migraine in the Norfolk Island population. Hum Genet. 2015; 134: 1079-1087.
- 211 Esserlind AL, Christensen AF, Steinberg S, et al. The association between candidate migraine susceptibility loci and severe migraine phenotype in a clinical sample. Cephalalgia. 2016; 36: 615-623.
- 212 Christensen AF, Esserlind AL, Werge T, Stefansson H, Stefansson K, Olesen J. The influence of genetic constitution on migraine drug responses. Cephalalgia. 2016; 36: 624-639.
- 213 Menon S, Lea RA, Roy B, et al. Genotypes of the MTHFR C677T and MTRR A66G genes act independently to reduce migraine disability in response to vitamin supplementation. Pharmacogenet Genomics. 2012; 22: 741-749.
- 214 Ferrari A, Sternieri E, Ferraris E, Bertolini A. Emerging problems in the pharmacology of migraine: Interactions between triptans and drugs for prophylaxis. Pharmacol Res. 2003; 48: 1-9.
- 215 Schurks M, Kurth T, Stude P, et al. G protein beta3 polymorphism and triptan response in cluster headache. Clin Pharmacol Ther. 2007; 82: 396-401.
- 216 Gentile G, Missori S, Borro M, Sebastianelli A, Simmaco M, Martelletti P. Frequencies of genetic polymorphisms related to triptans metabolism in chronic migraine. J Headache Pain. 2010; 11: 151-156.